Tunable phonon-induced transparency in bilayer graphene nanoribbons.
نویسندگان
چکیده
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.
منابع مشابه
Supporting Information: Tunable phonon-induced transparency in bilayer graphene nanoribbons
متن کامل
Graphene-Based Nanoresonator with Applications in Optical Transistor and Mass Sensing
Graphene has received significant attention due to its excellent properties currently. In this work, a nano-optomechanical system based on a doubly-clamped Z-shaped graphene nanoribbon (GNR) with an optical pump-probe scheme is proposed. We theoretically demonstrate the phenomenon of phonon-induced transparency and show an optical transistor in the system. In addition, the significantly enhance...
متن کاملTunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study
Using non-equilibrium molecular dynamics, we show that asymmetrically defected graphene nanoribbons (GNR) are promising thermal rectifiers. The optimum conditions for thermal rectification (TR) include low temperature, high temperature bias, 1% concentration of single-vacancy or substitutional silicon defects, and a moderate partition of the pristine and defected regions. TR ratio of 80% is fou...
متن کاملFast and slow edges in bilayer graphene nanoribbons: Tuning the transition from band to Mott insulator
We show that gated bilayer graphene zigzag ribbons possess a fast and a slow edge, characterized by edge-state velocities that differ due to non-negligible next-nearest-neighbor hopping elements. By applying bosonization and renormalization group methods, we find that the slow edge can acquire a sizable interactioninduced gap, which is tunable via an external gate voltage Vg. In contrast to the...
متن کاملEffect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study
The thermal conductivity of monolayer graphene nanoribbons (GNRs) with different tensile strain is investigated by using a nonequilibrium molecular dynamics method. Significant increasing amplitude of the molecular thermal vibration, molecular potential energy vibration and thermal conductivity vibration of stretching GNRs were detected. Some 20%~30% thermal conductivity decay is found in 9%~15...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2014